Ӿ !   öƽ ڷ ȭ!
  
  ι
  ߼ұ å
  öƽ
  
  ȸ/̳
  
  ȸƮ
  ̴
  ̾ ī
   Talk
  
  ӳƮ
  öƽ ̵
  Ʈ/
  ̴ϵͷ
ȹƯ > ȸƮ
Science Report 5
[öƽ̾] Է 2019-12-07 22:12:25
"öƽ Ȳ ذå б å - 5"

. öƽ ̻ ȿ Ȳ ..... Science Report 4 ̾

2. öƽ ȿ

. öƽ ȿ

öƽ ִ ȿҿ lipase depolymerase(PHA depolymerase, PHB depolymerase, PLA depolymerase, PCL depolymerase), esterase, proteinase(proteinase K against PLA), cutinase, urease, ׸ dehydratase ִ. ̵ ȿҰ ϴ öƽ κ ؼ ռ, Ideonella sakaiensis ռ öƽ ص ϴ(Austin et al., 2018).

ռöƽ ִ ȿҷ PETase ִ. PETase 2016 Ϻ źҿ õ PET ִ Ideonella sakaiensis ׸ƿ ó ߱ ȿ̴. PETase PET Ͽ mono-(2-hydroxyethyl) terephthalate(MHET) Ű, ̰ ٽ ü terephthalic acid ٲ۴. Ideonella sakaiensis PETase ܹ , ܹ Ͼ PET ؿ ȿ Ը ο Ȱ ȿҸ ʷ ٰ ִ(Joo et al., 2018). Harry et al.(2018) öƽ شɷ Ű ȿҸ Ͽ, PET ü PEF(polyethylene-2,5-furandicarboxylate) ִٰ .

. öƽ ȿ

ֱٿ ؼ ռ ڸ Ǵ ִ ̻ ȿҵ ȿҵ öƽ ȯ ȸ ִ ˸ öƽ Ȱ ĺ λǰ ִ. ⿡ PE, PS, PUR ׸ PET ռ öƽ ظ ̻ ȿ ˸ſ ߰ ִ. PET building block ȸϱ ȿ öƽ ⹰ Ȱ ̷ ȿ 뿡 ǰ ǰ ִ(Wei & Zimmermann, 2017).

ε ֵȴ (<׸ 3.2> ). ̻ Ͽ öƽ Ų , ǥ ߰ μ. öƽ ȿҴ ռ ü ذ ϸ, ռ ü ũⰡ 10~50 ź ҵǸ, Ǿ ߰ 縦 ϰ Ѵ.

κ ռ ڴ (crystalline) (amorphous) ϴ semi-crystalline ü̸, ̻ ޱ (<׸ 3.3> ). ü ȭ ؼ ġ ǰ ó PE ȹ κ ع Ŀ صȴ.

. Carbon-carbon backbone öƽ ȿҿ

PE C-C backbone öƽ ϰ Ǵ ̴. ׷Ƿ ֱ Ⱓ پ PE Ȱ ǰ ִ. ֱ , ̻ ȿҵ Ĺ ߰ߵ ȭ C-C bond ִ phenol lignin ִ ȿҵ PE شɵ ϰ ִٰ ִ(Wei & Zimmermann, 2017). ̷ ȿҵδ laccase, manganese peroxidase (MnP), lignin peroxidase(LiP) ִ. Rhodococcus ruber C208 Ͽ laccase ȿҸ ̿Ͽ UV-irradiated PE film ϸ, Trametes vericolor ȿҸ ̿Ͽ 1-hydroxybenzotriazole Ͽ PE ϴ ˷ ִ(<ǥ 3.12> ). <ǥ 3.12> C-C backbone öƽ ϴ ̻ ȿҵ Ÿ ̴.

C-C backbone ٸ ߿ öƽ PVC ȿҵ Ѵٴ . ׷ ̻ Ǵ ȥ 繰 ̿ϸ ̻ PVCؿ ȿ Ÿٰ Ǿ(Wei & Zimmermann, 2017).

. PUR ȿҿ

PUR carbamate(urethane) bond di- Ǵ polyisocyanate ׸ polyol ̴. PUR öƽ urethane ester bond ϴ urease, esterase, ׸ protease ܷü ص ִ(<ǥ 3.13> ).

Protease amide urethane ϴ ݸ, urease urea Ѵ. esterase protease ȿҿ պع ֿ Ŀ Ͽ polyester PUR ester Ѵ(<׸ 3.4> ). PUR ϴ ̻ ȿҷδ polyhydroxy-alkanoate depolymerase յ polyamidase esterase ̿ ʱ̴ܰ.

. PET ȿҿ

PET ؼ Ÿ backbone ݺ ׷ŻƮ ü 罽 ѵ ̵ ̴. ݰ PET Ӵ (amorphous) (crystalline) ȹ ϰ ־ ؼ ģ. 65 ̻ PET ̿µ(Tg) µ κ Ƿ ȿҿ Ͼ ִ. , Tg PET ϱ ؼ µ ȿҰ ʿϴ. ֱ 30 µ PET ȿ ذ ӵ ſ Ǿ(Wei & Zimmermann, 2017).

漱 lipase cutinase PET Ͽ PET ʸ ǥ Ų(<ǥ 3.14> ). Lipase Ѳ (lid structure) Ÿ Ҽ ˸ ͸ ־ ټ ѵǾֱ PET Ȱ Ÿ. , Ѳ cutinase PET ʸ Ȱ Ÿ ִ. Ư, Thermomyces(formerly Humicola) insolens и cutinase HiC ȿҴ 70, 96ð̸ PET film , Thermobifida fusca KW3 polyester hydrolase TfCut2 ȿҴ ݼ̿ 70 ǿ PET film ִٰ ˷ ִ.

30% ̻̰ PET 40% PET Ϲ PET ǰ ȿ ؿ ׼ ִ. Ϻ ȿҴ 50 ̻ µ PET Ȱ Ÿ, ࿬ż( Ͽ Ʋ ų ι ü 罽 ƴ Ű ݰ Ŵ) PET ǿ ξ صȴ. Ǵ ࿬ż PET ª ð ؽŰ ̴.

 

Ethylene glycol, terephthalate, mono-(2-hydroxyethyl) terephthalate (MHET) bis-(2-hydroxyethyl) terephthalate(BHET) PET ȿ طκ ֿ 뼺 μ, PET ϴ polyester hydrolase TfCut2 ȿҿ ۿ Ÿ(<ǥ 3.15> ). , ʹ̼ ȿ ⿡ PET ʸ ظ ν ߻ϴ MHET BHET Ͽ ȿ ִ ߵǰ ִ(Wei & Zimmermann, 2017). PET ȿ ȿ 迡 ̹ ̴.

. IsPETase PET ش پ IsPETase

PET ؼ Ideonella sakaiensis и PETase(IsPETase) Ǿ Ȱ Ser-His-Asp ˸ ü PET 4 MHET κ ϱ ϰ ִٰ ˷. 迡 , PET Ͽ MHET, terephthalic acid ethylene glycol ԸǾ, PET Ȱ ٸ PETase ĺ ȿҵ鵵 õǾ. ֱٿ IsPETase PET ü ִ ŷ ùķ̼ Ͽ PET Ư IsPETase ش Ư¡ Ͽ ̸ ȿ Ͼ Ͽ ߻ IsPETase ȿ IsPETase Ͽ(Joo et al., 2018).

. Pseudomonas sp. öƽ ȿ

Ϲ ȿ ش ҿ ۿ ÷ ߿ Ѵ. ȿ ؿ ȭ Ǵ ȭ ׸Ƹ Űų ظ ų ִ ɱ , alcohol Ǵ carbonyl⸦ ÷Ͽ ģ Ŵν ȿ ظ Ѵ. Carbonyl ط TCA cycle  β-oxidation ȴ.

Depolymerase hydrolase ȿҴ ū öƽ ü ۿϿ ڷ ϴ Ѵ. ش ü 罽 (exo-attack) Ǵ ü 罽 ߰ (endo-attack) ٿ Ͼ ִ. Exo-attack ׸ư ȭ ִ ø Ǵ ܷü ϸ endo-attack ڷ ҽŰ ̻ ذ ȭ ɼ ȴ. Pseudomonas sp.κ и depolymerase ó PS ϴ ȿ̸ P. stutzeri JA1001 PEG ش glyoxylic acid ϴ PEG dehydrogenase Ͽ öƽ ϴ ȴ.

Esterase, lipase ׸ cutinase öƽ ؿ ־ ȿ̴(<ǥ 3.16> ). ̷ ȿҴ ȭ carbonylź ڿ ģټ ׸ ϰ ȿ ü ϴ ſ ߿ Ѵ. ҵ 翡 Pseudomonas AKS2 PES ش ȿ м Ǵ ȿҿ Ż ȿ Ȱ ȴ(Wilkes & Aristilde, 2017). <ǥ 3.16> õ ٿ PE, PS, PUR, PET, PE hydrolase, esterase, protease, lipase, polyurethanase, alkane monooxygenase, alkane hydroxylase  صȴٴ ˷ ִ.

3. öƽ ̻ ȿ Ȳ

츮 бδ 2018 Ȱ⹰Ȱ߻ 57 Ͽ, ̷ ذ ‘Ȱ ʿ ڿ صǴ öƽ ü ' ϴ , öƽ и, , Ȱ о , ģȯ öƽ ظ Ͽ ϴ ؼ öƽ о߿ ǰ ִ. õ, , , պ, ̿öƽ پ ؼ ߵǾ , ռ öƽ Ȳ̴. ׸ ؼ öƽ Ѱ ̰, ٴ ִ. , öƽ ü ȭDZ ռöƽ ر Ȱ ϴ öƽ ⹰ óϴ ȴ.

öƽ ȿҿ ʴ . 2018 ˷ ȿҺ PET شɷ ȿ , ȿ PET Ը PET Ȱ ȿҸ Ͽ(Joo et al., 2018). ׵ PET ȿҰ ش ŽϿ ܹ ִٴ ȮϿ, ȿ Ư PET ۿ ߿ ϴ ܱ(residue) Ը , ȿ Ͼ ߵ PETase ȿҴ ȿҿ PET Ȱ ִٰ Ͽ. ׷ ȿҸ öƽ ⹰ ó 忡 ϱ ؼ ǿȭ 뷮 ڵ ȴ.

öƽ ȿ ̿ ؼ, ռ öƽ ȿ ش ʿϴ. ռ öƽ ȿ 뷮 ̻ ȿ 뷮 ʿϴ. , Ư ȯǿ ȿ Ȱ Ǿϰ, 뷮 öƽ ⹰ żϰ ó ־ϱ 뷮 öƽ ⹰ ż ó ȿ ȿ Ǿ Ѵ. , öƽ ش ִ ̻ Ͽ °迡 ġ ̳ ȯ , ۿ뿡 ڵ Ѵ.

ܿ , 漱, , öƽ ش پ ̷ , ȿ Ը ο ռ öƽ Ȱ ǰ ִ. ׷ ȿ ϸ, öƽ ̹ ̸, ߵ ر ǿȭ, 뷮ȭ ϴ. öƽ õ ǿȭ ؼ ʿϴ.

. öƽ ü Ȳ, . : öƽ б å ȡ ̾ϴ.

•踻(2007). “Microorganisms capable of plastics degradation”, ڿп, 18, pp. 1-9.

•Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R.

L., Pollard, B. C., Dominick, G., Duman, R., El Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E. & Beckham, G. T.(2018). “Characterization and engineering of a plastic-degrading aromatic polyesterase”, Proceedings of the National Academy of Sciences of the United States of America, Vol.115 No.19, pp. 4350~4357.

•Chandra, R.(2015). “Environmental Waste Management”, CRC Press, pp. 341~370. Colak, A. & Gune, S.(2004). “Polyhydroxylakanoate degrading hydrolase-like activities

by Pseudomonas sp. isolated from soil”, International Biodeterioration & Biodegradation, Vol.53, pp. 103~109.

•Harrison, P., Sapp, M., Schratzberger, M. & Osborn, A. M.(2011). “Interactions between microorganisms and marine microplastics: a call for research”, Marine Technology Society Journal, Vol.45 No.2, pp. 12~20.

•Hayase, N., Yano, H., Kudoh, E., Tsutsumi, C., Ushio, K., MiYahara, Y., Tanaka, S. & Nakagawa, K.(2004). “Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism”, Journal of Bioscience and Bioengineering, Vol.97 No.2, pp. 131~133.

•Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H. Y., Shin, T. J., Choi, S. Y., Lee, S.

Y. & Kim, K. J.(2018). “Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation”, Nature Communication 9, No.382, pp. 1~12.

•Kitamoto, H. K., Shinozaki, Y., Cao, X. H., Morita, T., Konishi, M., Tago, K.,

Kajiwara, H., Koitabashi, M., Yoshida, S., Watanabe, T.,

Sameshima-Yamashita, Y., Nakajima-Kambe, T. & Tsushima, S.(2011). “Phyllosphere yeasts rapidly break down biodegradable plastics”, AMB Express, Vol.1 No.44, pp. 1~11.

•Koitabashi, M., Sameshima-Yamashita, Y., Koike, H., Sato, T., Moriwaki, J., Morita, T., Watanabe, T., Yoshida, S. & Kitamoto, H.(2016). “Biodegradable Plastic-degrading Activity of Various Species of Paraphoma”, Journal of Oleo Science, Vol.65 No.7, pp. 621~627.

•Muthu, S.S. (Ed.).(2014). “Roadmap to Sustainable Textiles and Clothing”, Springer, pp. 83~123.

•Oberbeckmann, S., Osborn, A. M. & Duhaime, M. B.(2016). “Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris”, PLoS One, Vol.11 No.8, pp. e0159289.

•Pathak, V. M. & Navneet, P.(2017). “Review on the current status of polymer degradation: a microbial approach”, Bioresources and Bioprocessing, Vol.4, pp. 15.

•Pauli, N. C., Petermann, J. S., Lott, C. & Weber, M.(2017). “Macrofouling communities and the degradation of plastic bags in the sea: an in situ experiment”, Royal Society Open Science, Vol.4 No.10, pp. 170549.

•Quinteros, R., Goodwin, S., Lenz, R. W. & Park, W. H.(1999). “Extracellular degradadingof medium chain legth poly(β-hydroxyalkanoates) by Comamonas sp.”, International Journal of Biological Macromolecules, Vol.25 No.1~3, pp. 135~143.

•Raghul, S. S., Bhat, S.G., Chandrasekaran, M., Francis, V. & Thachil, E.T.(2014). “Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrio”, Int. J. Environ. Sci. Technol., Vol.11 No.11, pp. 1827~1834.

•Ravenschlag, K., Sahm, K., Pernthaler, J. & Amann, R.(1999). “High Bacterial Diversity in Permanently Cold Marine Sediments”, Applied and Environmental Microbiology, Vol.65 No.9, pp. 3982~3989.

•Russel, N. J.(1990). “Cold adaptation of microorganisms”, Philosophical Transactions of the Royal Society B: Biological Sciences, Vol.326, pp. 595~611.

•Shimao, M.(2001). “Biodegradation of plastics”, Current Opinion in Biotechnology, Vol.12 No.3, pp. 242~247.

•Singh, P., Singh, S. M. & Dhakephalkar, P.(2014). “Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic”, Extremophiles, Vol.18 No.2, pp. 229~242.

•Teeraphatpornchai, T., Nakajima-Kambe, T., Shimgeno-Akutsu, Y., Nakayama, M., Nomura, N., Nakahara, T. & Uchiama, H.(2003). “Isolation and characterization of a bacterium thatdegrades various polyester-based biodegradable plastics”, Biotechnology Letters, Vol.25 No.1, pp. 23~28.

•Tomita, K., Kuroki, Y., Hayashi, N. & Komukai, Y.(2000). "Isolation of a thermophile degrading poly(butylene succinate-co-butylene adipate)”, Journal of Bioscience and Bioengineering, Vol.90 No.3, pp. 350~352.

•Uchida, H., Nakajima-Kambe, T., ShigeNo-Akutsu, Y., Nomura, N., Tokiwa, Y. & Nakahara, T.(2000). “Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic”, FEMS Microbiology Letters, Vol.189 No.1, pp. 25~29.

•Urbanek, A. K., Rymowicz, W. & Mirończuk, A. M.(2018). "Degradation of plastics and plastic-degrading bacteria in cold marine habitats”, Applied Microbiology and Biotechnology, Vol.102 No.18, pp. 7669~7678.

•Wei, R. & Zimmermann, W.(2017). “Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?”, Microbial biotechnology, Vol.10 No.6, pp. 1308~1322.

•Wilkes, R. A. & Aristilde, L.(2017). “Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges”, Journal of Appied Microbiology, Vol.123 No.3, pp. 582~593.

•Yadav, A. N., Verma, P., Kumar, V., Sachan, S. G. & Saxena, A. K.(2017). "Extreme cold environments: a suitable niche for selection of Novel psychrotrophic microbes for biotechnological applications”, Advances in Biotechnology & Microbiology, Vol.2 No.2, pp. 555584.

•Yamada, O. K., Mukumoto, H., Katsuyaya, Y., Saiganji, A. & Tani, Y.(2001). "Degradation of polyethylene by a fungus Penicillium simplicissimum YK”, Polymer Degradation and Stability, Vol.7, pp. 323~327.

•Yayasekara, R., Harding, I., Bowater, I. & Lonergan, G.(2005). "Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation.”, Journal of Polymer Environment, Vol.13, pp. 231.

•Yoko, T., NariakiIshii, Ken-ichi, K. & Hiroshi, M.(2004). "Degradation of poly(ethylene succinate) by mesophilic bacteria”, Polymer Degradation and Stability, Vol.84 No.1, pp. 115~121.

•Yoon, M.G., Jeong, J.H. & Kim, M.N.(2012). “Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell”, Journal Bioremediation and Biodegradation, Vol.3 No.4, pp. 1~8.

•Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K.(2016). "A bacterium that degrades and assimilates poly(ethylene terephthalate)”, Science, Vol.351 No.6278, pp. 1196~1199.

•Yuji, O., Hiroyuki, A., Teizi, U. & Kenzo, T.(1995). “Microbial degradation of poly(3-hydroxybutyrate) and polycaprolactone by filamentous fungi”, Journal of Fermentation and Bioengineering, Vol.80 No.3, pp. 265~269.

•Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L.A.(2013). “Life in the “plastisphere”: microbial communities on plastic marine debris”, Environmental Science & Technology, Vol.47 No.13, pp. 7137~7146.

•Zhao, J. H., Wang, X. Q., Zeng, J., Yang, G., Shin, F. H. & Yan, Q.(2005). “Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor”, Polymer Degradation and Stability, Vol.90 No.1, pp. 173~179.

•Zhu, C., Zhang, Z., Liu, Q., Wang, Z. & Jin, J.(2003). “Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols”, Journal of Applied Polymer Science, Vol.90 No.4, pp. 982~990.



<۱ڨ 'öƽ̾' - .>
ȸҰ ̿ ̿ȳ ޹ħ ̸ּҹܼź ȳ
ѱöƽ öƽ̾ ڹȣ:459-02-01243 ǸŽŰ:2018- -2027ȣ
ּ : 빮 ڷ 410, 404ȣ (ε, ) ǥ : å :
ȣ : ()ϼ Tel : 02-831-0083 Email : ps1987@plasticnet.kr
Copyright 2011 plasticnet All rights reserved.